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» Rings of operators.

» [ he intrinsic time of a factor.

» Classification of factors.

» Foliations and noncommutative spaces.



» [ he birth of noncommutative geo-

metry

» [ he new calculus and geometry.






Factorizations

Let the Hilbert space ‘H factor as a tensor product :

H=H1 & Ho>

Von Neumann, with his post-doctoral student Murray,
investigated the meaning of such a factorization at the
level of operators.

A factor is an algebra of operators which has all the
obvious properties of the algebra of operators of the
form T7 ® 1 acting in H = Hq1 ® Ho.



4. Another interpretation of (Ds) is suggested by quantum mechanics. The
operators of $ correspond there to all observable quantities which occur in a
mechanical system &. (Cf. (6), pp. 55-60, and (2C), p. 167. We restrict our-
selves to bounded operators, which correspond to those observables which have
a bounded range. Thus B corresponds to the totality of these observables.)
Now if © can be decomposed into two parts &,, S, and if we denote the set of
the operators which correspond to observables situated entirely in &, or in &,
by M; resp. M,, then we see:

(1) M,, M; are rings, and 1 (which corresponds to the “constant’’ observable
1) belongs to both M;, M.

(2) If A ¢eM,, B ¢ M, then the measurements of the observables of 4 and B
do not interfere (being in different parts of ©); therefore A, B commute
(cf. (6), pp. 11-14 and 76, or (20), pp. 117-121). Thus M, C M/.

(3) As ©is the sum of &,, &, therefore R(M,;, M;) = B.



Thus our problem of solving (Ds) corresponds to the quantum mechanical
problem of dividing a system & into two subsystems &,;, ©;; and in particular
the solutions M of (Ds) correspond to the complete rings of all observables of
suitable quantum mechanical systems.

This interpretation of (Ds) suggests of course strongly the surmise formulated
at the end of §2.2: It should be possible to describe © as (isomorphic to) the
space of all two variable functions f(z, y), (ff | f(z, v) |* dz dy finite), M operating
on z only, and M’ on y only. In this case &,, ©; would be explicitly given:
©, being described by the coordinate z, and ©; by the coordinate y.

The fact that the surmise of §2.2 is not true, is therefore the more remarkable;
particularly so because certain features of the “exceptional” rings M seem to
make them even better suited for quantum mechanical purposes than the cus-
tomary B. We will now discuss these properties of M.



Three types

Type I, if the Hilbert space H factors as a tensor pro-
duct :

H=H1 & H>

VVon Neumann and Murray found two other types :

Type Il : The classification of subspaces gives an inter-
val [0, 1] or [0, oo] ; continuous dimensions ! Trace erases
noncommutativity.

Type III : All that remains.



Quantum Statistical mechanics, KMS Condition

Imz=f

ip F(t + i) = ¢(c(b)a)

F(1) = 9(ac (b))

Imz=0

Haag, Hugenholtz and Winnink, time and thermodyna-
mics, link between tr(Aexp(—BH)) and the Heisenberg
evolution o4(A) = exp(itH)Aexp(—itH). 8 = h/kT.
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Tomita—Takesaki, 1970

T heorem

Let M be a von Neumann algebra and ¢ a faithful nor-
mal state on M, then there exists a unique

of € Aut(M)
which fulfills the KMS condition for g = 1.



Thesis (1971-1972)

Theorem (ac)

1 — Int(M) - Aut(M) — Out(M) — 1,
The class of of in Out(M) does not depend on .

Thus a von Neumann algebra M, has a canonical evo-
lution

R - Out(M).

Noncommutativity = Evolution
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Classification of factors

New invariants and reduction of type
IIT to type Il and automorphisms were
done in my thesis.

The Module S(M) : It is a closed sub-
group of R*,

Factors of type III,, )\ € [0, 1]
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Periods : T(M) C R is the subgroup

of R kernel of the time evolution.

Classification of hyperfinite factors
(ac 1976)



The von Neumann algebra of a foliation

dim F

D
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Random operators

They form a von Neumann algebra ca-

nonically associated to the foliation

Ty, operator in L2(0)
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» Measure theory = von Neumann al-

gebras.

» Topology = C*-algebras.

» Geometry = Spectral triples.

» Quantized Calculus.
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Continuous and discrete

Classical formulation of real variables :

f: X —>R

Discrete and continuous variables cannot coexist in
this classical formalism. Solved using the formalism of
quantum mechanics created by John von Neumann.
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Classical Quantum

Real variable Self-adjoint
f: X —R operator in Hilbert space

Possible values Spectrum of

of the variable the operator

Algebraic operations Algebra of operators
on functions in Hilbert space




Quantum variability

Quantum random number generation

on a mobile phone

Camera

- ->[ Extractor ]—>
LED

Random
numbers
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Newton

“In a certain problem, a variable is the quantity
that takes an infinite number of values which
are quite determined by this problem and are
arranged in a definite order"

“A variable is called infinitesimal if among its
particular values one can be found such that
this value itself and all following it are smaller in
absolute value than an arbitrary given number"”
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Infinitesimal variables

What is surprising is that the Quantum set-up imme-
diately provides a natural home for the “infinitesimal
variables" and here the distinction between *“variables™
and numbers (in many ways this is where the point of
view of Newton is more efficient than that of Leibniz)
is essential.
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Classical Quantum
Infinitesimal Compact
variable operator in Hilbert space
Infinitesimal of un(T) of size n=¢
order « when n — oo
Integral of 7[T — coefficient of
function [ f(x)dx log(A) in Tra(T)




Geometry from the spectral

point of view

Es muss also entweder das dem Raume zu Grunde lie-
gende Wirkliche eine discrete Mannigfaltigkeit bilden,
oder der Grund der Massverhaltnisse ausserhalb, in da-
rauf wirkenden bindenen Kraften, gesucht werden.

Either therefore the reality which underlies space must
be discrete, or we must seek the foundation of its metric
relations outside it, in binding forces which act upon it.
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Line element

The Riemannian paradigm is based on the Taylor ex-
pansion in local coordinates of the square of the line
element and in order to measure the distance between
two points one minimizes the length of a path joining
the two points

d(a,b) = Inf/ Vou dat de”
Y
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Change of unit of length, 1967, 1984

-... * , F54
La® @ .-
n'2 .* °.
e
ST
el AVAV,
C ‘o ‘o £=9.192631.770Hz F=3
eszu

Meter — Wave length (Krypton (1967) spectrum of 86Kr then
Caesium (1984) hyperfine levels of C133)
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Spectral paradigm

P. Dirac showed how to extract the square root of the
Laplacian and this provides a direct connection with the
quantum formalism : the line element is the propagator

ds = D1

d(a,b) = Sup|f(a) — f(O)] [ [[[D, f]l] < 1.

This is a “Kantorovich dual" of the usual formula.
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Classical Quantum
Line element Propagator
ds? = guvdxtdxz” operator ds ;= D1
d(a,b) = d(a,b) = Sup|f(a) — f(b)
Inf |, Vids® I[D, £l < 1
Volume 7[ds4 — coefficient of
[ /gd*x log(A) in Tra(ds*)




Line element

The line element contains all the information of the
gauge potentials i.e. of the forces binding the space
together, moreover it is dressed by the quantum cor-

rections.

ds=D""

e B o
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Pure gravity

In our joint work with A. Chamseddine, W. van Suij-
lekom, we express the very elaborate Lagrangian given
by gravity coupled with the Standard Model, with all its
subtleties (V-A, BEH, seesaw, etc etc...) as pure gra-
Vity on a geometric space-time whose texture is slightly
more elaborate than the 4-dimensional continuum.

» How to get the algebra : Clifford 4+ punctuation

» How to get the Einstein action : Spectral Action
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Language = why NC simplifies

The language respects NC and is a much more informa-
tive datum, with M>(C) and Y, Y2 = 1 one generates
all matrix valued functions on the two-sphere.

One obtains all spin 4-manifolds using the slight amount
of noncommutativity provided by

Mo (H) @ M4(C)

which appear as Clifford algebras and give the SM gauge
group.
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Higher Heisenberg equation

One introduces a variable Y with Y4 = 1, and the quan-
tization condition takes J and ~ into account :

1
—(Z[D,2)---|D,Z)) =~ Z= 2EJEJ ! -1,
n:

1 1
E=_(1+Yy)® (1+iY-)

Y=Y, Y €C®M,CydC)
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