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Riemann zeta function (1859)
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Meromorphic continuation.
Functional equation: 775/2" (%) ¢(s) invariant by s 1 —s.
Controls distribution of primes, e.g., prime number theorem
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“equivalent” to {(s) =0 = Re(s) < 1.

Open problems:
» Riemann hypothesis: ((s) =0 = Re(s) < 1/2
> Lindelof hypothesis: ((1/2 + it) < (1 + |t])®.



L-functions

The known generalizations of ((s) are “L-functions of degree n":
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No standard definition of “L-function,” but many examples:
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((s) is an L-function of degree 1

Dirichlet L-functions L(x,s), attached to Dirichlet characters
Artin L-functions L(p,s), attached to Galois representations
Hasse—Weil zeta functions, attached to varieties

Hecke L-functions, attached to classical modular forms

Langlands L-functions, attached to automorphic forms on
reductive groups

Standard L-functions L(7,s) of degree n, attached to
automorphic forms m on GL,. Example:

((s)" <— Eisenstein series



Conjectures of Langlands, mostly wide open:
» “Every L-function” is a standard L-function.

» [-functions preserved under natural operations, e.g., “tensor
product:”

Lrs) =[]0~ apsp) ™ L(ovs) = [T~ Bpip™)
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Why care about estimating L-functions?

Motivated by questions/applications discovered in the 1980’s and
1990's. 1 2 3

1. heuristics for moments of families:
T
/ C(1/2+it)[2 dt ~7 arge T(log T)¥', (gi) = 1,2,42,24024, . .
0

2. distribution of integral solutions to n = [ 4+ [0+ [
<— nontrivial bounds for L(p x 0¢g,1/2).
3. arithmetic quantum unique ergodicity: |p}|? du ~ (?),

<— nontrivial bounds for L(p; x ¢; x W,1/2).

!Keating=Snaith, Conrey—Farmer—Keating—Rubinstein-Snaith,
Diaconu—Goldfeld—Hoffstein, ...

2|lwaniec, Duke, Duke-Schulze-Pillot, Duke—Friedlander—lwaniec, . ..

3Rudnick-Sarnak, Lindenstrauss, Holowinsky—Soundararajan, ...



Bounds for ((s)

Consider e(0) :=inf{e e R: ((0 + it) <, (1 + |t])¢}.

Convexity bound: e(3) < 1/4. \

Lindelsf hypothesis: e(3) = 0.
Subconvexity: e(3) < 1/4. .
1/4—=

1/2

Weyl, Hardy-Littlewood (1921): e(3) < 1/6 < 1/4, i.e,
C(1/2+ it) <. (1+ [t])/oF=.

This is the prototypical subconvex bound or “weak Lindelof
hypothesis.”



t-aspect subconvexity problem for standard L-functions

For L(m,s): standard L-function of degree n, convexity bound reads
L(m,1/2 4 it) <pe (14 |8])"/4F=.

Until recently, subconvex bounds known only for n < 3:
» n=1: Weyl/Hardy-Littlewood 1916-1921, ..., Bourgain 2017

» n=2: Good 1982, ..., Duke—Friedlander—lwaniec 1990’s,
Michel-Venkatesh 2010, ...

» n = 3: Li 2011, Munshi 2015, ..., Blomer—Buttcane 2020, ...
> log~? savings: Soundararajan 2010, Soundararajan—Thorner
2019

Theorem 1 (N; arXiv, October 2021)
For any standard L-function of degree n, we have

L(m,1/2 +it) < (1 + ’t|)”/4—1/12n4‘




Uniformity in 7

For m on GL,, of level one (for simplicity), L(m,s) of degree n
satisfies a functional equation under s — 1 — s involving

S+ i\ S+ i\
r( g )r( . )uﬂ,s)

for some complex numbers Ag, ..., Ap.
Analytic conductor:

n
Cond(r, t) := [ (1 + [A; + t]).
j=1

Convexity bound can be made uniform in = (Molteni 2002):

L(m,1/2 + it) <pne Cond(r, t)1/4F2.



Subconvexity for standard L-functions assuming “uniform
parameter growth”

We have the following generalization of Theorem 1:

Theorem 2 (N, arXiv, October 2021)

Let m be on GL, and of level one (for simplicity).
Assume the “uniform parameter growth” condition

<A+t A+t <T| forsome T >1.

2022

Then

L(m,1/2 + it) <, Cond(r, t)1/4-1/127

Important open problem: remove uniform growth assumption.
Application to “strong AQUE.”



Theorem 1 is the subject of the third paper in a “series:”
1. The orbit method and analysis of automorphic forms
» with A. Venkatesh; arXiv, May 2018; Acta Math. 2021
» asymptotics for averages of families of L-functions
L(m x 0,1/2) on SOpt1 x SO, or Upyg x Uy,
2. Spectral aspect subconvex bounds for U,11 x U,

> arXiv, Dec 2020; submitted
» subconvex bounds for L-functions

L(m x 0,1/2)

attached to automorphic forms on U, x U, with U,
anisotropic, so that U,(Z)\ U,(R) is compact.

» S. Marshall: Mar 2018 announcement of “special case”
(well-spaced parameters, depth aspect)

3. Bounds for standard L-functions

» arXiv, Oct 2021

> e.g., removes compactness assumption from paper 2,
specializes o to be the Eisenstein series for which

L(o,s)={((s)", L(mxa,s)=L(ms)".



Discussion of methods

» Main tool for rigorous study of L-functions: integral
representations involving automorphic forms.

» Basic example:

/ by 2 Y = 2slr(s2) ()
Y —— ~—

. g “special function” value of an L-function
integral of an automorphic form



» ((s)? comes from the GL, modular form

[ee]

E(x+iy) =Y _7(n)cos(2mnx)y/yKo(2mny) + (---),

n=1
where Kp: Bessel function (“GL; special function™).

s\ 2

[y L = (5) clsr

Reason: special function integral evaluation

/Kg(27ry)ys Cji/ =x°T (%)2

» Analogues of this integral evaluation in higher degree are more
complicated.




Automorphic forms on GL,, are functions
v:GL,(Z)\ GL,(R) — C

satisfying certain “eigenfunction” or “irreducibility” conditions.
They may be organized into representations: irreducible spaces
m C C®(GL,(Z)\ GLA(R)).

For v € m on GL,41 and v € 0 on GL,,

restriction(v) - u = L(m x 0,1/2) x (special function), .

/GL,,(Z)\ GLn(R)

To study L(m x o,1/2) this way,* we must understand
» the special functions, and
> the integrals of automorphic forms
for suitable v and u.  Remarks:
» (special function), , is the integral of the product of
archimedean Whittaker functions attached to v and w.
» If o is an Eisenstein series with trivial parameters, then

L(m x o,5) = L(m,s)".

4 Nlawine Rernctein—Reonikavy Mirhel—\enlkat+ach




The proofs of our recent results concerning L-functions involve

1. a systematic approach to the “special functions” analysis
required by those proofs, based on the orbit method and
microlocal analysis, and

2. additional “global” arguments:

> (N-V 2018): Ratner theory

> (N 2020, 2021): analysis of a relative trace formula,
invariant-theoretic problems, ...



Goal of the lectures

» Develop the orbit method in analytic form as a microlocal
calculus for Lie group representations, sharp up to €'s.

» Describe “special function asymptotics” relevant for integral
representations of L-functions.

» Invariant-theoretic issues: “stability,” “transversality.”

Today: a very quick survey of the main points concerning each of
these and how they fit together.



Microlocalized vectors and coadjoint orbits

> 1 CO(MN\G), G = GLy(R).

Or = {n x n matrices with eigenvalues \1,..., A,}.

v

» O, > 7~ aclass of vectors v € ™ “microlocalized at 7:"

7T(eXp(X)) v~ eitrace(xr) v

for all x € g in a suitable small neighborhood of the origin.
» Can define w, € C°(GL,(R)) such that

m(w;) & projection onto v satisfying above conditions.

» 7(w;) behaves like a rank ~ 1 idempotent projector
> Fr = {m:7m(w;) # 0} is a short family

Similar discussion applies more generally to any reductive group G.



Example
G = PGLy(R) = SO(1, 2)

g/\9< X y+z>
y—z —x

» one-sheeted hyperboloid
Or(r)={x>+y?>-22=r%}

» two-sheeted hyperboloid
O~ (k) ={x>+y? -2 = —k?}
Tempered irreducible representations:
» principal series 7(r,¢)
> discrete series w(k) for k € Z>1

On(rey = 07(r),  Oxpy =

O~ (k —1/2)



Special function asymptotics

1. If v and u are microlocalized, say at 7 = (T: I) € Or and
n € Op, then [NV, N]

) ) 0 if Ty +1n %0,
(special function), , ~ ) _
T—/% if g +n=0.

2. GL,(R) acts on {¢€ € Oy : =&y € O, } by conjugation, often
simply-transitively (~~ stability in the sense of geometric
invariant theory).

Similar discussion applies to many strong Gelfand pairs (G, H),
i.e., (Upt1,Up) or (SOp41,50,) over R or C.



Some pictures of {§ € O, : =&y € O, } for
(G, H) = (50(3),S0(2)) and (PGL,(R), GL1(R)):




Given a short family 7 C {n's on PGL,;+1} and o on GL,, we
choose 7 < T with 7 € O, -ty € O, so F =~ F,, and let
vy € m and u € o be microlocalized at 7 and —7. Then for

x,y € PGL,1+1(R),

k(oy)= > wrxt)

~EPGL1(Z)

=Y D mw)vix)v(y)

T veB(r)

~ Z VW(X)W7

TeEF

hence

/ k(e )u(x)u(y) i dy
x,y€GLA(Z)\ GLA(R)

~ TR Lr 9 0, Y.
TeF



In summary,

TS | I

TeEF

~
~

u(x)u(y) > we(xlyy)dxdy.

K,yEGLn(Z)\GLn(R) ~EPGLp11(Z)

Requires asymptotic evaluation.

» The v € GL,(Z) contribute a “main term,” addressed via
amplification.

> Estimating >~ cpgL,,,(7)—GL,(z) USES:
> A linear-algebraic fact concerning 7 (consequences:
“transversality,” “bilinear forms estimate”).
» A local L? growth bound for u.



