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Riemann zeta function (1859)

ζ(s) =
∏
p

1

1− p−s
=
∞∑
n=1

1

ns
.

Meromorphic continuation.
Functional equation: π−s/2Γ

(
s
2

)
ζ(s) invariant by s 7→ 1− s.

Controls distribution of primes, e.g., prime number theorem

lim
x→∞

# {p 6 x}
x/ log x

= 1

“equivalent” to ζ(s) = 0 =⇒ Re(s) < 1.
Open problems:

I Riemann hypothesis: ζ(s) = 0 =⇒ Re(s) 6 1/2

I Lindelöf hypothesis: ζ(1/2 + it)�ε (1 + |t|)ε.



L-functions

The known generalizations of ζ(s) are “L-functions of degree n”:

L(s) =
∏
p

1

1− αp,1p−s
· · · 1

1− αp,np−s
.



No standard definition of “L-function,” but many examples:

I ζ(s) is an L-function of degree 1

I Dirichlet L-functions L(χ, s), attached to Dirichlet characters

I Artin L-functions L(ρ, s), attached to Galois representations

I Hasse–Weil zeta functions, attached to varieties

I Hecke L-functions, attached to classical modular forms

I Langlands L-functions, attached to automorphic forms on
reductive groups

I Standard L-functions L(π, s) of degree n, attached to
automorphic forms π on GLn. Example:

ζ(s)n ←→ Eisenstein series



Conjectures of Langlands, mostly wide open:

I “Every L-function” is a standard L-function.

I L-functions preserved under natural operations, e.g., “tensor
product:”

L(π, s) =
∏
p,j

(1− αp,jp
−s)−1, L(σ, s) =

∏
p,k

(1− βp,kp−s)−1

 ? L(π × σ, s) =
∏
p,j ,k

(1− αp,jβp,kp
−s)−1



Why care about estimating L-functions?

Motivated by questions/applications discovered in the 1980’s and
1990’s. 1 2 3

1. heuristics for moments of families:∫ T

0
|ζ(1/2+it)|2k dt ∼? akgkT (logT )k

2
, (gk) = 1, 2, 42, 24024, . . . .

2. distribution of integral solutions to n = �+�+�

←→ nontrivial bounds for L(ϕ× θQ , 1/2).

3. arithmetic quantum unique ergodicity: |ϕj |2 dµ ∼ (?),

←→ nontrivial bounds for L(ϕj × ϕj ×Ψ, 1/2).

1Keating–Snaith, Conrey–Farmer–Keating–Rubinstein-Snaith,
Diaconu–Goldfeld–Hoffstein, . . .

2Iwaniec, Duke, Duke–Schulze-Pillot, Duke–Friedlander–Iwaniec, . . .
3Rudnick–Sarnak, Lindenstrauss, Holowinsky–Soundararajan, . . .



Bounds for ζ(s)

Consider e(σ) := inf {e ∈ R : ζ(σ + it)�σ (1 + |t|)e}.

Convexity bound: e(12) 6 1/4.
Lindelöf hypothesis: e(12) = 0.
Subconvexity: e(12) < 1/4.

Weyl, Hardy–Littlewood (1921): e(12) 6 1/6 < 1/4, i.e.,

ζ(1/2 + it)�ε (1 + |t|)1/6+ε.

This is the prototypical subconvex bound or “weak Lindelöf
hypothesis.”



t-aspect subconvexity problem for standard L-functions
For L(π, s): standard L-function of degree n, convexity bound reads

L(π, 1/2 + it)�π,ε (1 + |t|)n/4+ε.

Until recently, subconvex bounds known only for n 6 3:

I n = 1: Weyl/Hardy–Littlewood 1916–1921, ..., Bourgain 2017

I n = 2: Good 1982, ..., Duke–Friedlander–Iwaniec 1990’s,
Michel–Venkatesh 2010, ...

I n = 3: Li 2011, Munshi 2015, ..., Blomer–Buttcane 2020, ...

I log−δ savings: Soundararajan 2010, Soundararajan–Thorner
2019

Theorem 1 (N; arXiv, October 2021)

For any standard L-function of degree n, we have

L(π, 1/2 + it)�π (1 + |t|)n/4−1/12n4 .



Uniformity in π

For π on GLn of level one (for simplicity), L(π, s) of degree n
satisfies a functional equation under s 7→ 1− s involving

Γ

(
s + iλ1

2

)
· · · Γ

(
s + iλn

2

)
L(π, s)

for some complex numbers λ1, . . . , λn.
Analytic conductor:

Cond(π, t) :=
n∏

j=1

(1 + |λj + t|).

Convexity bound can be made uniform in π (Molteni 2002):

L(π, 1/2 + it)�n,ε Cond(π, t)1/4+ε.



Subconvexity for standard L-functions assuming “uniform
parameter growth”

We have the following generalization of Theorem 1:

Theorem 2 (N, arXiv, October 2021)

Let π be on GLn and of level one (for simplicity).
Assume the “uniform parameter growth” condition

T

2022
6 |λ1 + t|, . . . , |λn + t| 6 T for some T > 1.

Then

L(π, 1/2 + it)�n Cond(π, t)1/4−1/12n
5
.

Important open problem: remove uniform growth assumption.
Application to “strong AQUE.”



Theorem 1 is the subject of the third paper in a “series:”

1. The orbit method and analysis of automorphic forms
I with A. Venkatesh; arXiv, May 2018; Acta Math. 2021
I asymptotics for averages of families of L-functions

L(π × σ, 1/2) on SOn+1×SOn or Un+1×Un.

2. Spectral aspect subconvex bounds for Un+1×Un

I arXiv, Dec 2020; submitted
I subconvex bounds for L-functions

L(π × σ, 1/2)

attached to automorphic forms on Un+1×Un with Un

anisotropic, so that Un(Z)\Un(R) is compact.
I S. Marshall: Mar 2018 announcement of “special case”

(well-spaced parameters, depth aspect)

3. Bounds for standard L-functions
I arXiv, Oct 2021
I e.g., removes compactness assumption from paper 2,

specializes σ to be the Eisenstein series for which

L(σ, s) = ζ(s)n, L(π × σ, s) = L(π, s)n.



Discussion of methods

I Main tool for rigorous study of L-functions: integral
representations involving automorphic forms.

I Basic example:∫
θ(iy)y s/2

dy

y︸ ︷︷ ︸
integral of an automorphic form

=̇ 2π−s/2Γ(s/2)︸ ︷︷ ︸
“special function”

ζ(s)︸︷︷︸
value of an L-function

.



I ζ(s)2 comes from the GL2 modular form

E (x + iy) =
∞∑
n=1

τ(n) cos(2πnx)
√
yK0(2πny) + (· · · ),

where K0: Bessel function (“GL2 special function”).∫
E (iy)y s

dy

y
= π−sΓ

( s
2

)2
ζ(s)2.

Reason: special function integral evaluation∫
K0(2πy)y s

dy

y
= π−sΓ

( s
2

)2
.

I Analogues of this integral evaluation in higher degree are more
complicated.



Automorphic forms on GLn are functions

v : GLn(Z)\GLn(R)→ C

satisfying certain “eigenfunction” or “irreducibility” conditions.
They may be organized into representations: irreducible spaces
π ⊆ C∞(GLn(Z)\GLn(R)).

For v ∈ π on GLn+1 and u ∈ σ on GLn,∫
GLn(Z)\GLn(R)

restriction(v) · u = L(π × σ, 1/2)× (special function)v ,u.

To study L(π × σ, 1/2) this way,4 we must understand
I the special functions, and
I the integrals of automorphic forms

for suitable v and u. Remarks:
I (special function)v ,u is the integral of the product of

archimedean Whittaker functions attached to v and u.
I If σ is an Eisenstein series with trivial parameters, then

L(π × σ, s) = L(π, s)n.
4following Bernstein–Reznikov, Michel–Venkatesh, ...



The proofs of our recent results concerning L-functions involve

1. a systematic approach to the “special functions” analysis
required by those proofs, based on the orbit method and
microlocal analysis, and

2. additional “global” arguments:
I (N–V 2018): Ratner theory
I (N 2020, 2021): analysis of a relative trace formula,

invariant-theoretic problems, ...



Goal of the lectures

I Develop the orbit method in analytic form as a microlocal
calculus for Lie group representations, sharp up to ε’s.

I Describe “special function asymptotics” relevant for integral
representations of L-functions.

I Invariant-theoretic issues: “stability,” “transversality.”

Today: a very quick survey of the main points concerning each of
these and how they fit together.



Microlocalized vectors and coadjoint orbits

I π ↪→ C∞(Γ\G ), G = GLn(R).

I Oπ := {n × n matrices with eigenvalues λ1, . . . , λn}.
I Oπ 3 τ  a class of vectors v ∈ π “microlocalized at τ :”

π(exp(x))v ≈ e i trace(xτ)v

for all x ∈ g in a suitable small neighborhood of the origin.

I Can define ωτ ∈ C∞c (GLn(R)) such that

π(ωτ ) ≈ projection onto v satisfying above conditions.

I π(ωτ ) behaves like a rank ≈ 1 idempotent projector

I Fτ := {π : π(ωτ ) 6≈ 0} is a short family

Similar discussion applies more generally to any reductive group G .



Example

G = PGL2(R) ∼= SO(1, 2)

g∧ 3
(

x y + z
y − z −x

)

I one-sheeted hyperboloid
O+(r) = {x2 + y2 − z2 = r2}

I two-sheeted hyperboloid
O−(k) = {x2 + y2 − z2 = −k2}

Tempered irreducible representations:

I principal series π(r , ε)

I discrete series π(k) for k ∈ Z>1

Oπ(r ,ε) = O+(r), Oπ(k) = O−(k − 1/2)



Special function asymptotics

1. If v and u are microlocalized, say at τ =

(
τH ∗
∗ ∗

)
∈ Oπ and

η ∈ Oσ, then [NV, N]

(special function)v ,u ≈

{
0 if τH + η 6≈ 0,

T−n
2/4 if τH + η ≈ 0.

2. GLn(R) acts on {ξ ∈ Oπ : −ξH ∈ Oσ} by conjugation, often
simply-transitively ( stability in the sense of geometric
invariant theory).

Similar discussion applies to many strong Gelfand pairs (G ,H),
i.e., (Un+1,Un) or (SOn+1, SOn) over R or C.



Some pictures of {ξ ∈ Oπ : −ξH ∈ Oσ} for
(G ,H) = (SO(3), SO(2)) and (PGL2(R),GL1(R)):



Given a short family F ⊂ {π’s on PGLn+1} and σ on GLn, we
choose τ � T with τ ∈ Oπ, −τH ∈ Oσ, so F ≈ Fτ , and let
vπ ∈ π and u ∈ σ be microlocalized at τ and −τH . Then for
x , y ∈ PGLn+1(R),

k(x , y) :=
∑

γ∈PGLn+1(Z)

ωτ (x−1γy)

=
∑
π

∑
v∈B(π)

π(ωτ )v(x)v(y)

≈
∑
π∈F

vπ(x)vπ(y),

hence ∫
x ,y∈GLn(Z)\GLn(R)

k(x , y)u(x)u(y) dx dy

≈ T−n
2/2
∑
π∈F

∣∣L(π ⊗ σ, 12)
∣∣2 .



In summary,

T−n
2/2
∑
π∈F

∣∣L(π, 12)
∣∣2n

≈
∫
x ,y∈GLn(Z)\GLn(R)

u(x)u(y)
∑

γ∈PGLn+1(Z)

ωτ (x−1γy) dx dy .

Requires asymptotic evaluation.

I The γ ∈ GLn(Z) contribute a “main term,” addressed via
amplification.

I Estimating
∑

γ∈PGLn+1(Z)−GLn(Z) uses:

I A linear-algebraic fact concerning τ (consequences:
“transversality,” “bilinear forms estimate”).

I A local L2 growth bound for u.


