# Estimates for L-functions, I 

Paul Nelson

Aarhus University

Automorphic Forms Summer School
Erdős Center, Rényi Institute, Budapest 29 August 2022

## Riemann zeta function (1859)

$$
\zeta(s)=\prod_{p} \frac{1}{1-p^{-s}}=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Meromorphic continuation.
Functional equation: $\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$ invariant by $s \mapsto 1-s$.
Controls distribution of primes, e.g., prime number theorem

$$
\lim _{x \rightarrow \infty} \frac{\#\{p \leqslant x\}}{x / \log x}=1
$$

"equivalent" to $\zeta(s)=0 \Longrightarrow \operatorname{Re}(s)<1$.
Open problems:

- Riemann hypothesis: $\zeta(s)=0 \Longrightarrow \operatorname{Re}(s) \leqslant 1 / 2$
- Lindelöf hypothesis: $\zeta(1 / 2+i t) \ll_{\varepsilon}(1+|t|)^{\varepsilon}$.


## L-functions

The known generalizations of $\zeta(s)$ are " $L$-functions of degree $n$ ":

$$
L(s)=\prod_{p} \frac{1}{1-\alpha_{p, 1} p^{-s}} \cdots \frac{1}{1-\alpha_{p, n} p^{-s}} .
$$

No standard definition of "L-function," but many examples:

- $\zeta(s)$ is an $L$-function of degree 1
- Dirichlet $L$-functions $L(\chi, s)$, attached to Dirichlet characters
- Artin $L$-functions $L(\rho, s)$, attached to Galois representations
- Hasse-Weil zeta functions, attached to varieties
- Hecke $L$-functions, attached to classical modular forms
- Langlands L-functions, attached to automorphic forms on reductive groups
- Standard $L$-functions $L(\pi, s)$ of degree $n$, attached to automorphic forms $\pi$ on $\mathrm{GL}_{n}$. Example:
$\zeta(s)^{n} \longleftrightarrow$ Eisenstein series

Conjectures of Langlands, mostly wide open:

- "Every L-function" is a standard L-function.
- L-functions preserved under natural operations, e.g., "tensor product:"

$$
\begin{aligned}
L(\pi, s)= & \prod_{p, j}\left(1-\alpha_{p, j} p^{-s}\right)^{-1}, \quad L(\sigma, s)=\prod_{p, k}\left(1-\beta_{p, k} p^{-s}\right)^{-1} \\
& \rightsquigarrow^{?} L(\pi \times \sigma, s)=\prod_{p, j, k}\left(1-\alpha_{p, j} \beta_{p, k} p^{-s}\right)^{-1}
\end{aligned}
$$

## Why care about estimating L-functions?

Motivated by questions/applications discovered in the 1980's and 1990's. 123

1. heuristics for moments of families:

$$
\int_{0}^{T}|\zeta(1 / 2+i t)|^{2 k} d t \sim_{?} a_{k} g_{k} T(\log T)^{k^{2}}, \quad\left(g_{k}\right)=1,2,42,24024, \ldots
$$

2. distribution of integral solutions to $n=\square+\square+\square$
$\longleftrightarrow$ nontrivial bounds for $L\left(\varphi \times \theta_{Q}, 1 / 2\right)$.
3. arithmetic quantum unique ergodicity: $\left|\varphi_{j}\right|^{2} d \mu \sim(?)$, $\longleftrightarrow$ nontrivial bounds for $L\left(\varphi_{j} \times \varphi_{j} \times \Psi, 1 / 2\right)$.
[^0]
## Bounds for $\zeta(s)$

Consider $e(\sigma):=\inf \left\{e \in \mathbb{R}: \zeta(\sigma+i t) \ll_{\sigma}(1+|t|)^{e}\right\}$.

Convexity bound: $e\left(\frac{1}{2}\right) \leqslant 1 / 4$. Lindelöf hypothesis: $e\left(\frac{1}{2}\right)=0$.
Subconvexity: $e\left(\frac{1}{2}\right)<1 / 4$.


Weyl, Hardy-Littlewood (1921): e( $\left.\frac{1}{2}\right) \leqslant 1 / 6<1 / 4$, i.e.,

$$
\zeta(1 / 2+i t) \ll_{\varepsilon}(1+|t|)^{1 / 6+\varepsilon} .
$$

This is the prototypical subconvex bound or "weak Lindelöf hypothesis."

## $t$-aspect subconvexity problem for standard $L$-functions

For $L(\pi, s)$ : standard $L$-function of degree $n$, convexity bound reads

$$
L(\pi, 1 / 2+i t)<_{\pi, \varepsilon}(1+|t|)^{n / 4+\varepsilon}
$$

Until recently, subconvex bounds known only for $n \leqslant 3$ :

- $n=1$ : Weyl/Hardy-Littlewood 1916-1921, ..., Bourgain 2017
- $n=$ 2: Good 1982, ..., Duke-Friedlander-Iwaniec 1990's, Michel-Venkatesh 2010, ...
- $n=3$ : Li 2011, Munshi 2015, ..., Blomer-Buttcane 2020, ...
- $\log ^{-\delta}$ savings: Soundararajan 2010, Soundararajan-Thorner 2019

Theorem 1 (N; arXiv, October 2021)
For any standard L-function of degree $n$, we have

$$
L(\pi, 1 / 2+i t)<_{\pi}(1+|t|)^{n / 4-1 / 12 n^{4}}
$$

## Uniformity in $\pi$

For $\pi$ on $\mathrm{GL}_{n}$ of level one (for simplicity), $L(\pi, s)$ of degree $n$ satisfies a functional equation under $s \mapsto 1-s$ involving

$$
\Gamma\left(\frac{s+i \lambda_{1}}{2}\right) \cdots \Gamma\left(\frac{s+i \lambda_{n}}{2}\right) L(\pi, s)
$$

for some complex numbers $\lambda_{1}, \ldots, \lambda_{n}$.
Analytic conductor:

$$
\operatorname{Cond}(\pi, t):=\prod_{j=1}^{n}\left(1+\left|\lambda_{j}+t\right|\right)
$$

Convexity bound can be made uniform in $\pi$ (Molteni 2002):

$$
L(\pi, 1 / 2+i t)<_{n, \varepsilon} \operatorname{Cond}(\pi, t)^{1 / 4+\varepsilon}
$$

## Subconvexity for standard L-functions assuming "uniform

 parameter growth"We have the following generalization of Theorem 1 :
Theorem 2 (N, arXiv, October 2021)
Let $\pi$ be on $\mathrm{GL}_{n}$ and of level one (for simplicity).
Assume the "uniform parameter growth" condition

$$
\frac{T}{2022} \leqslant\left|\lambda_{1}+t\right|, \ldots,\left|\lambda_{n}+t\right| \leqslant T \quad \text { for some } T \geqslant 1
$$

Then

$$
L(\pi, 1 / 2+i t) \ll_{n} \operatorname{Cond}(\pi, t)^{1 / 4-1 / 12 n^{5}} .
$$

Important open problem: remove uniform growth assumption. Application to "strong AQUE."

Theorem 1 is the subject of the third paper in a "series:"

1. The orbit method and analysis of automorphic forms

- with A. Venkatesh; arXiv, May 2018; Acta Math. 2021
- asymptotics for averages of families of $L$-functions $L(\pi \times \sigma, 1 / 2)$ on $\mathrm{SO}_{n+1} \times \mathrm{SO}_{n}$ or $\mathrm{U}_{n+1} \times \mathrm{U}_{n}$.

2. Spectral aspect subconvex bounds for $\mathrm{U}_{n+1} \times \mathrm{U}_{n}$

- arXiv, Dec 2020; submitted
- subconvex bounds for L-functions

$$
L(\pi \times \sigma, 1 / 2)
$$

attached to automorphic forms on $\mathrm{U}_{n+1} \times \mathrm{U}_{n}$ with $\mathrm{U}_{n}$ anisotropic, so that $U_{n}(\mathbb{Z}) \backslash U_{n}(\mathbb{R})$ is compact.

- S. Marshall: Mar 2018 announcement of "special case" (well-spaced parameters, depth aspect)

3. Bounds for standard L-functions

- arXiv, Oct 2021
- e.g., removes compactness assumption from paper 2, specializes $\sigma$ to be the Eisenstein series for which

$$
L(\sigma, s)=\zeta(s)^{n}, \quad L(\pi \times \sigma, s)=L(\pi, s)^{n} .
$$

## Discussion of methods

- Main tool for rigorous study of L-functions: integral representations involving automorphic forms.
- Basic example:

$$
\underbrace{\int \theta(\text { iy }) y^{s / 2} \frac{d y}{y}} \doteq \underbrace{2 \pi^{-s / 2} \Gamma(s / 2)}_{\text {"special function" value of an } L \text {-function }} \underbrace{\zeta(s)}
$$

integral of an automorphic form

- $\zeta(s)^{2}$ comes from the $\mathrm{GL}_{2}$ modular form

$$
E(x+i y)=\sum_{n=1}^{\infty} \tau(n) \cos (2 \pi n x) \sqrt{y} K_{0}(2 \pi n y)+(\cdots)
$$

where $K_{0}$ : Bessel function (" $G L_{2}$ special function").

$$
\int E(\text { iy }) y^{s} \frac{d y}{y}=\pi^{-s} \Gamma\left(\frac{s}{2}\right)^{2} \zeta(s)^{2} .
$$

Reason: special function integral evaluation

$$
\int K_{0}(2 \pi y) y^{s} \frac{d y}{y}=\pi^{-s} \Gamma\left(\frac{s}{2}\right)^{2}
$$

- Analogues of this integral evaluation in higher degree are more complicated.

Automorphic forms on $\mathrm{GL}_{n}$ are functions

$$
v: \mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathbb{C}
$$

satisfying certain "eigenfunction" or "irreducibility" conditions. They may be organized into representations: irreducible spaces $\pi \subseteq C^{\infty}\left(\mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathrm{GL}_{n}(\mathbb{R})\right)$.

For $v \in \pi$ on $\mathrm{GL}_{n+1}$ and $u \in \sigma$ on $\mathrm{GL}_{n}$,

$$
\int_{\mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathrm{GL}_{n}(\mathbb{R})} \text { restriction }(v) \cdot u=L(\pi \times \sigma, 1 / 2) \times(\text { special function })_{v, u}
$$

To study $L(\pi \times \sigma, 1 / 2)$ this way, ${ }^{4}$ we must understand

- the special functions, and
- the integrals of automorphic forms for suitable $v$ and $u$. Remarks:
- (special function) $)_{v, u}$ is the integral of the product of archimedean Whittaker functions attached to $v$ and $u$.
- If $\sigma$ is an Eisenstein series with trivial parameters, then

$$
L(\pi \times \sigma, s)=L(\pi, s)^{n}
$$

[^1]The proofs of our recent results concerning $L$-functions involve

1. a systematic approach to the "special functions" analysis required by those proofs, based on the orbit method and microlocal analysis, and
2. additional "global" arguments:

- (N-V 2018): Ratner theory
- (N 2020, 2021): analysis of a relative trace formula, invariant-theoretic problems, ...


## Goal of the lectures

- Develop the orbit method in analytic form as a microlocal calculus for Lie group representations, sharp up to $\varepsilon$ 's.
- Describe "special function asymptotics" relevant for integral representations of $L$-functions.
- Invariant-theoretic issues: "stability," "transversality."

Today: a very quick survey of the main points concerning each of these and how they fit together.

## Microlocalized vectors and coadjoint orbits

- $\pi \hookrightarrow C^{\infty}(\Gamma \backslash G), G=G L_{n}(\mathbb{R})$.
- $\mathcal{O}_{\pi}:=\left\{n \times n\right.$ matrices with eigenvalues $\left.\lambda_{1}, \ldots, \lambda_{n}\right\}$.
- $\mathcal{O}_{\pi} \ni \tau \rightsquigarrow$ a class of vectors $v \in \pi$ "microlocalized at $\tau$ :"

$$
\pi(\exp (x)) v \approx e^{i \operatorname{trace}(x \tau)} v
$$

for all $x \in \mathfrak{g}$ in a suitable small neighborhood of the origin.

- Can define $\omega_{\tau} \in C_{c}^{\infty}\left(G L_{n}(\mathbb{R})\right)$ such that $\pi\left(\omega_{\tau}\right) \approx$ projection onto $v$ satisfying above conditions.
- $\pi\left(\omega_{\tau}\right)$ behaves like a rank $\approx 1$ idempotent projector
- $\mathcal{F}_{\tau}:=\left\{\pi: \pi\left(\omega_{\tau}\right) \not \approx 0\right\}$ is a short family

Similar discussion applies more generally to any reductive group $G$.

## Example

$$
\begin{aligned}
& G=\mathrm{PGL}_{2}(\mathbb{R}) \cong \mathrm{SO}(1,2) \\
& \mathfrak{g}^{\wedge} \ni\left(\begin{array}{cc}
x & y+z \\
y-z & -x
\end{array}\right)
\end{aligned}
$$

- one-sheeted hyperboloid

$$
\mathcal{O}^{+}(r)=\left\{x^{2}+y^{2}-z^{2}=r^{2}\right\}
$$

- two-sheeted hyperboloid

$$
\mathcal{O}^{-}(k)=\left\{x^{2}+y^{2}-z^{2}=-k^{2}\right\}
$$

Tempered irreducible representations:

- principal series $\pi(r, \varepsilon)$
- discrete series $\pi(k)$ for $k \in \mathbb{Z}_{\geqslant 1}$

$$
\mathcal{O}_{\pi(r, \varepsilon)}=\mathcal{O}^{+}(r), \quad \mathcal{O}_{\pi(k)}=\mathcal{O}^{-}(k-1 / 2)
$$

## Special function asymptotics

1. If $v$ and $u$ are microlocalized, say at $\tau=\left(\begin{array}{cc}\tau_{H} & * \\ * & *\end{array}\right) \in \mathcal{O}_{\pi}$ and $\eta \in \mathcal{O}_{\sigma}$, then [NV, N]

$$
\text { (special function) })_{v, u} \approx \begin{cases}0 & \text { if } \tau_{H}+\eta \not \approx 0 \\ T^{-n^{2} / 4} & \text { if } \tau_{H}+\eta \approx 0\end{cases}
$$

2. $G L_{n}(\mathbb{R})$ acts on $\left\{\xi \in \mathcal{O}_{\pi}:-\xi_{H} \in \mathcal{O}_{\sigma}\right\}$ by conjugation, often simply-transitively ( $\rightsquigarrow$ stability in the sense of geometric invariant theory).
Similar discussion applies to many strong Gelfand pairs $(G, H)$, i.e., $\left(\mathrm{U}_{n+1}, \mathrm{U}_{n}\right)$ or $\left(\mathrm{SO}_{n+1}, \mathrm{SO}_{n}\right)$ over $\mathbb{R}$ or $\mathbb{C}$.

Some pictures of $\left\{\xi \in \mathcal{O}_{\pi}:-\xi_{H} \in \mathcal{O}_{\sigma}\right\}$ for $(G, H)=(\mathrm{SO}(3), \mathrm{SO}(2))$ and $\left(\mathrm{PGL}_{2}(\mathbb{R}), \mathrm{GL}_{1}(\mathbb{R})\right):$


Given a short family $\mathcal{F} \subset\left\{\pi\right.$ 's on $\left.\mathrm{PGL}_{n+1}\right\}$ and $\sigma$ on $\mathrm{GL}_{n}$, we choose $\tau \asymp T$ with $\tau \in \mathcal{O}_{\pi},-\tau_{H} \in \mathcal{O}_{\sigma}$, so $\mathcal{F} \approx \mathcal{F}_{\tau}$, and let $v_{\pi} \in \pi$ and $u \in \sigma$ be microlocalized at $\tau$ and $-\tau_{H}$. Then for $x, y \in \operatorname{PGL}_{n+1}(\mathbb{R})$,

$$
\begin{aligned}
k(x, y) & :=\sum_{\gamma \in \operatorname{PGL}_{n+1}(\mathbb{Z})} \omega_{\tau}\left(x^{-1} \gamma y\right) \\
& =\sum_{\pi} \sum_{v \in \mathcal{B}(\pi)} \pi\left(\omega_{\tau}\right) v(x) \overline{v(y)} \\
& \approx \sum_{\pi \in \mathcal{F}} v_{\pi}(x) \overline{v_{\pi}(y)}
\end{aligned}
$$

hence

$$
\begin{aligned}
& \int_{x, y \in \mathrm{GL}_{n}(\mathbb{Z}) \backslash \mathrm{GL}_{n}(\mathbb{R})} k(x, y) u(x) \overline{u(y)} d x d y \\
& \quad \approx T^{-n^{2} / 2} \sum_{\pi \in \mathcal{F}}\left|L\left(\pi \otimes \sigma, \frac{1}{2}\right)\right|^{2}
\end{aligned}
$$

In summary,

$$
\begin{aligned}
& T^{-n^{2} / 2} \sum_{\pi \in \mathcal{F}}\left|L\left(\pi, \frac{1}{2}\right)\right|^{2 n} \\
& \quad \approx \int_{x, y \in \mathrm{GL}_{n}(\mathbb{Z}) \backslash G \mathrm{~L}_{n}(\mathbb{R})} u(x) \overline{u(y)} \sum_{\gamma \in \mathrm{PGL}_{n+1}(\mathbb{Z})} \omega_{\tau}\left(x^{-1} \gamma y\right) d x d y .
\end{aligned}
$$

Requires asymptotic evaluation.

- The $\gamma \in \mathrm{GL}_{n}(\mathbb{Z})$ contribute a "main term," addressed via amplification.
- Estimating $\sum_{\gamma \in \mathrm{PGL}_{n+1}(\mathbb{Z})-\mathrm{GL}_{n}(\mathbb{Z})}$ uses:
- A linear-algebraic fact concerning $\tau$ (consequences: "transversality," "bilinear forms estimate").
- A local $L^{2}$ growth bound for $u$.


[^0]:    ${ }^{1}$ Keating-Snaith, Conrey-Farmer-Keating-Rubinstein-Snaith, Diaconu-Goldfeld-Hoffstein, . . .
    ${ }^{2}$ Iwaniec, Duke, Duke-Schulze-Pillot, Duke-Friedlander-Iwaniec, ...
    ${ }^{3}$ Rudnick-Sarnak, Lindenstrauss, Holowinsky-Soundararajan, ...

[^1]:    ${ }^{4}$ following Bernstein-Reznikov Michel-V/enkatesh

