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Turán numbers

α(H) := independence number of hypergraph H

An n-vertex r -graph is a Turán (n, k, r)-system if α(H) < k .

T (n, k , r) := min{|E (H)| : |V (H)| = n, α(H) < k}(n
r

)
− T (n, k , r) is the largest number of edges in an n-vertex

r -graph that does not contain a complete k-vertex subgraph.

Mantel (1907): T (n, 3, 2)

Turán (1941): T (n, k , 2)

optimal construction: k − 1 disjoint cliques of almost equal size

Turán’s conjecture. The optimal construction for
T (n, (r − 1)s + 1, r) is s disjoint cliques of almost equal size.



Turán’s conjecture

Conjecture. The optimal construction for T (n, (r − 1)s + 1, r) is
s disjoint cliques of almost equal size.

Does not hold for r ≥ 4, even asymptotically.

T (n, 7, 4)
?
≈ 1

8
·
(
n

4

)

T (n, 7, 4) ≤ 443

640
· 1
8
·
(
n

4

)

What about r = 3 ?



Turán’s conjecture for T (n, 2s + 1, 3)

Conjecture. The optimal construction for T (n, 2s + 1, 3) is s
disjoint cliques of almost equal size.

No counterexample is known when n ≡ 0 mod s.

We will concentrate on T (n, 5, 3).



Turán’s conjecture for T (n, 5, 3)

Conjecture. Two disjoint cliques of almost equal size give an
optimal construction for T (n, 5, 3).

For odd n, there are counterexamples.

J. Surányi (1971):

AG(2,3) yields T (9, 5, 3) ≤ 12 < 14 =
(5
3

)
+
(4
3

)
.

Collinear triples of points in PG(2,3) yield:

T (13, 5, 3) ≤ 13 · 4 = 52 < 55 =
(7
3

)
+

(6
3

)
.

Kostochka’s construction:

T (8m + 1, 5, 3) ≤ 4
3m(2m − 1)(8m + 1) <

(4m+1
3

)
+
(4m

3

)
.

The exact values of T (n, 5, 3) are known for n ≤ 17 (Markström).



A plausible conjecture for T (2m + 1, 5, 3)

Suppose Turán conjecture for n = 2m holds: T (2m, 5, 3) = 2
(m
3

)
.

Since T (n, k , r)/
(n
r

)
is nondecreasing in n,

T (2m + 1, 5, 3)(2m+1
3

) ≥ T (2m, 5, 3)(2m
3

) ,

T (2m + 1, 5, 3) ≥
⌈
2m + 1

2m − 2
· 2
(
m

3

)⌉

=


1
6(2m + 1)m(m − 2) if m is even;

1
6(2m − 3)(m − 1)(m + 1) if m is odd.

Our aim is to prove the matching upper bound on T (2m + 1, 5, 3).



Monochromatic triangles in 2-edge-colored Kn

Goodman (1959):

M(n) is the minimum # of monochromatic triangles in Kn

M is # of monochromatic triangles
R is # of rainbow triangles
P is # of monochromatic 2-edge paths

Then M + R =
(n
3

)
, P = 3M + R, so M = 1

2

(
P −

(n
3

))
.

xj := # black edges − #white edges incident to vertex j

# of monochromatic 2-edge paths with j as the middle vertex is( 1
2
(n−1+xj )

2

)
+
( 1

2
(n−1−xj )

2

)
= 1

4(n
2 − 4n + 3 + x2j )

M =
1

8

n∑
j=1

(n2−4n+3+x2j )−
1

2

(
n

3

)
=

1

24
n(n−1)(n−5)+

1

8

n∑
j=1

x2j .



Monochromatic triangles in 2-edge-colored Kn

M(n) =
1

24
n(n − 1)(n − 5) +

1

8
min

x1,...,xn

n∑
j=1

x2j .

If n is even, xj must be odd.
The minimum is attained when x21 = . . . = x2n = 1.

If n ≡ 1 mod 4, the minimum is attained when x1 = . . . = xn = 0.

If n ≡ 3 mod 4, the number of edges in Kn is odd.
The minimum is attained when x1 = ±2 and x2 = . . . = xn = 0.

M(n) =



2
(m
3

)
if n = 2m;

1
6(2m + 1)m(m − 2) if n = 2m + 1, m is even;

1
6(2m − 3)(m − 1)(m + 1) if n = 2m + 1, m is odd.



Monochromatic triangles as a Turán (n, 5, 3)-system

A coloring is called balanced when x1 = . . . = xn = 0.

The only coloring of K5 without monochromatic triangles
is the balanced one (edges of the same color form a 5-cycle).

If in a coloring of Kn,
no 5 vertices induce a balanced coloring of K5,
then the monochromatic triangles form a Turán (n, 5, 3)-system.

Example 1. Take two groups of vertices of size m. Color edges
inside each group with black, color the edges connecting the groups
with white. The monochromatic triangles form two disjoint cliques.

Example 2. Consider 9 vertices of a 3× 3 grid.
Color all horizontal and vertical segments with black,
and all diagonal segments with white.
The 12 monochromatic triangles (6 black and 6 white)
form the 12 lines of AG(2,3).



Monochromatic triangles as Turán (5,3)-systems

We are going to prove T (n, 5, 3) ≤ M(n) for n = 2m + 1 ≥ 17,
n ̸= 27. (Recall that the values of T (n, 5, 3) for n ≤ 17 are known).

To do so, we will strengthen Goodman’s result by constructing an
(almost) balanced coloring of Kn that does not induce a balanced
coloring of K5.

Such a coloring does not exists for n = 5, 7, 11, 13, 15.

For any n ≥ 1, with the exception of n = 13, the currently best
upper bound on T (n, 5, 3) can be achieved by a system of
monochromatic triangles in Kn.



Avoiding 3 edges on 4 vertices

When 4 vertices in a 3-graph span exactly 3 edges,
we call it a (4, 3)-configuration.

It is easy to see that a system of monochromatic triangles can not
produce a (4, 3)-configuration.

The system of collinear triples in PG(2,3) does not contain such a
configuration either.

Let B(n, k) denote the currently best upper bound for T (n, k , 3).

In particular, B(n, 5) = M(n) + 1 if n = 5, 7, 11, 15, 27, and
B(n, 5) = M(n) for all other n.

Then for any n, there exists a Turán (n, 5, 3)-system of size B(n, 5)
that does not contain a (4, 3)-configuration.

In fact, for any k and any n, there exists a Turán (n, k, 3)-system
of size B(n, k) that does not contain a (4, 3)-configuration.



Avoiding 3 edges on 4 vertices

Razborov (2010), Pikhurko (2011):

For large n, the minimum size of a Turán (n, 4, 3)-system

that does not contain a (4, 3)-configuration

is the same as the conjectured value of T (n, 4, 3).

Problem. Prove that every Turán (n, 5, 3)-system

without a (4, 3)-configuration has at least M(n) edges.



Regular graphs without induced 5-cycles

Instead of coloring the edges of Kn with black and white,
we may consider the subgraph formed by the black edges.

Theorem 1. For n ≡ 1 mod 4, n ̸= 5, 13, there exists a
n−1
2 -regular n-vertex graph without induced 5-cycles.

We call a graph almost d-regular if all vertices except one have
degree d , and the remaining vertex has degree d ± 1.

Theorem 2. For n ≡ 3 mod 4, n ̸= 7, 11, 15, 27, there exists an
almost n−1

2 -regular n-vertex graph without induced 5-cycles.



Regular graphs without induced 5-cycles

We will try to enlarge the problem and find all pairs (n, d) such
that there exists an (almost) d-regular n-vertex graph without
induced 5-cycles.

Lemma 3. Let n be even. For any d such that 0 ≤ d ≤ n − 1,
there exists a d-regular n-vertex graph without induced 5-cycles.

Lemma 4. Let n be odd. For any even d such that
0 ≤ d ≤ n − 1, d ̸= n−1

2 , there exists a d-regular n-vertex graph
without induced 5-cycles.

Lemma 5. Let n ≡ 3 mod 4. For any odd d such that
1 ≤ d ≤ n − 2, d ̸= n−1

2 , there exists an almost d-regular n-vertex
graph without induced 5-cycles.



Regular graphs without induced 5-cycles

Lemma 3. Let n be even. For any d such that 0 ≤ d ≤ n − 1,
there exists a d-regular n-vertex graph without induced 5-cycles.

Proof. Let n = 2m. The induction basis at m = 1 is trivial.
Let m > 1. We may assume d ≤ m − 1.
If d = m − 1, take the union of two disjoint Km.
If d ≤ m− 2, let k be an even number equal either d + 1 or d + 2.
Then n − k ≥ 2m − (d + 2) ≥ m > d .
By the induction hypothesis, there exists
an (n − k)-vertex d-regular graph without induced 5-cycles,
as well as a k-vertex d-regular graph without induced 5-cycles.
Take the union of their disjoint copies. □



Regular graphs without induced 5-cycles

Lemma 6. Suppose graphs G and H do not contain induced
5-cycles. Blow up a vertex of G and replace it with a copy of H.
Then the resulting graph does not contain induced 5-cycles.

Plan of proof of Theorem 1:

− take a small graph G without induced 5-cycles;

− blow up each vertex and replace it with its own regular graph
without induced 5-cycles;

− select the orders and degrees of these graphs to ensure that the
resulting graph is n−1

2 -regular.

We elect G to be the smallest n−1
2 -regular n-vertex graph

without induced 5-cycles, which is (at n = 9) the 3× 3 grid graph.



Regular graphs without induced 5-cycles
The 3× 3 grid graph is a 4-regular graph with 9 vertices.

(n1, d1) −− (n2, d2) −− (n3, d3)
| | |

(n4, d4) −− (n5, d5) −− (n6, d6)
| | |

(n7, d7) −− (n8, d8) −− (n9, d9)

We have 18 variables and 1+9=10 equations:

n1 + . . .+ n9 = n,

d1 + n2 + n3 + n4 + n7 =
n − 1

2
, . . .

nj =
n

9
, dj =

1

2

(n
9
− 1

)
.

Restrictions: 0 ≤ dj ≤ nj − 1,

If nj is odd, then dj is even, dj ̸=
nj−1
2 .



Regular graphs: proof of Theorem 1

n = 8k + 1

(1, 0) (k, k − 1) (k , k − 1)
(k , k − 1) (k, 0) (k , 0)
(k , k − 1) (k, 0) (k , 0)

Now we may relax restrictions and allow (nj , dj) = (8k + 1, 4k).

n = 8k + 5, k ≥ 2 : 7 cases, depending on n mod 72.

n = 72r + 5

(8r + 1, 4r + 2) (8r + 1, 4r − 2) (8r + 1, 4r − 2)
(8r − 1, 4r) (8r + 1, 4r) (8r + 1, 4r)
(8r − 1, 4r) (8r + 1, 4r) (8r + 1, 4r)



Almost regular graphs without induced 5-cycles

n = 4k + 3, k ̸= 1, 2, 3, 6.

((n1, d1)) (n2, d2) (n3, d3)
(n4, d4) (n5, d5) (n6, d6)
(n7, d7) (n8, d8) (n9, d9)

“((n1, d1))” denotes almost d1-regular n1-vertex graph
without induced 5-cycles

n = 36r + 7

((4r + 3, 2r − 1)) (4r + 2, 2r − 2) (4r + 2, 2r − 2)
(4r , 2r) (4r , 2r + 1) (4r , 2r + 1)
(4r , 2r) (4r , 2r + 1) (4r , 2r + 1)



What about n=27 ?

There is a system of monochromatic triangles that yields

T (27, 5, 3) ≤ M(27) + 1.

3 possible outcomes:

▶ T (27, 5, 3) = M(27) + 1 (similar to n = 5, 7, 11, 15).

▶ Every almost 13-regular 27-vertex graph contains an induced
5-cycle, but there exists non-coloring based Turán
(27, 5, 3)-system of size M(27) (similar to n = 13), so
T (27, 5, 3) = M(27).

▶ There exists an almost 13-regular 27-vertex graph without
induced 5-cycles, so T (27, 5, 3) = M(27).



“Corrected” Turán’s conjecture for T (n, 5, 3)

Conjecture.

T (n, 5, 3) =

{
M(n) + 1 for n = 5, 7, 11, 15, 27;

M(n) for all other n.



T (n, k , 3) construction for arbitrary k

k − 1 cyclically ordered cliques B0, ...,Bk−2

with additional triples {x , y , z} where x , y ∈ Bj , z ∈ Bj+1,

j ∈ Zk−1 .

Conjecture. This construction is optimal for n ≡ 0 mod k − 1.

When k = 4, 6 this construction seems to be optimal

for all values of n.

The exact values of T (n, 4, 3), T (n, 6, 3) are known for n ≤ 18
(Markström).

Our results for T (2m + 1, 5, 3) yield improvements for all k ≥ 7.



Fon-Der-Flaass’ construction for T (n, 4, 3)

Fon-Der-Flaass (1988) : Take an n-vertex oriented graph Γ

and construct a 3-graph H with the same vertex set.

Vertices a, b, c form an edge in H if one of the two conditions met:

1). (a, b), (a, c) are arcs of Γ.

2). a, b, c induce at most one arc in Γ.

If no 4 vertices in Γ induce an oriented 4-cycle,

then H is a Turán (n, 4, 3)-system.

Kostochka found 2m−2 nonisomorphic constructions for
T (3m, 4, 3).

For m ≤ 6, there are no other constructions with the same number
of edges.

Fon-Der-Flaass’ construction allows to recover all of the
Kostochka’s constructions.



Generalized Fon-Der-Flaass’ construction
Color arcs of an n-vertex oriented graph Γ with k − 1 colors.

Vertices a, b, c form an edge in 3-graph H
if one of the two conditions met:

1). (a, b), (a, c) are arcs of the same color in Γ.

2). a, b, c induce at most one arc in Γ.

If 2k vertices do not contain an edge in H,

then they induce an orgraph in Γ where

each vertex has indegree 1 and outdegree 1 in each color.

If Γ does not have such induced subgraphs,

then H is a Turán (n, 2k, 3)-system.

This (k − 1)-color construction allows to recover the standard
“cyclical” construction for T (n, 2k , 3).

T (17, 8, 3) = 31 can not be recovered by the 3-color construction.



Thank you!


