Graph embedding methods and applications
SZAKÁCS LILI KATA (ELTE) és BÉRES FERENC (SZTAKI)DEEP LEARNING SZEMINÁRIUM
on 5/18/22
Feed-forward networks can be interpreted as mappings with linear decision surfaces at the level of the last layer.
e investigate how the tangent space of the network can be exploited to refine the decision in case of ReLU (Rectified Linear Unit) activations.
We show that a simple Riemannian metric parametrized on the parameters of the network forms a similarity function at least as good as the original network and we
suggest a sparse metric to increase the similarity gap.